The incidence chromatic number of toroidal grids

نویسندگان

  • Éric Sopena
  • Jiaojiao Wu
چکیده

An incidence in a graph G is a pair (v, e) with v ∈ V (G) and e ∈ E(G), such that v and e are incident. Two incidences (v, e) and (w, f) are adjacent if v = w, or e = f , or the edge vw equals e or f . The incidence chromatic number of G is the smallest k for which there exists a mapping from the set of incidences of G to a set of k colors that assigns distinct colors to adjacent incidences. In this paper, we prove that the incidence chromatic number of the toroidal grid Tm,n = Cm2Cn equals 5 when m,n ≡ 0(mod 5) and 6 otherwise.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong Chromatic Index of Products of Graphs

The strong chromatic index of a graph is the minimum number of colours needed to colour the edges in such a way that each colour class is an induced matching. In this paper, we present bounds for the strong chromatic index of three different products of graphs in terms of the strong chromatic index of each factor. For the Cartesian product of paths, cycles or complete graphs, we derive sharper ...

متن کامل

Incidence dominating numbers of graphs

In this paper, the concept of incidence domination number of graphs  is introduced and the incidence dominating set and  the incidence domination number  of some particular graphs such as  paths, cycles, wheels, complete graphs and stars are studied.

متن کامل

On r-dynamic coloring of graphs

An r-dynamic proper k-coloring of a graph G is a proper k-coloring of G such that every vertex in V (G) has neighbors in at least min{d(v), r} different color classes. The r-dynamic chromatic number of a graph G, written χr(G), is the least k such that G has such a coloring. By a greedy coloring algorithm, χr(G) ≤ r∆(G) + 1; we prove that equality holds for ∆(G) > 2 if and only if G is r-regula...

متن کامل

The locating-chromatic number for Halin graphs

Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...

متن کامل

The oriented chromatic number of some grids

We define some infinite subfamily of hexagonal grids with the oriented chromatic number 5. We present an algorithm for oriented colouring of some hexagonal planar oriented grids. The algorithm uses BFS spanning tree of a subgraph of the dual graph of the grid and a homomorphism to some tournament of order 6. In general the difference between the number of colours given by the algorithm and the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discussiones Mathematicae Graph Theory

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2013